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This document contains the following supporting information for the article: 

• Figure S-1: Inverted intensity images of ITP sample zone at various locations. 
• Figure S-2: Electrophoretic mobility of Alexa Fluor 488 as a function of ionic 

strength. 
• Analytical solution of sample concentration growth a LE-TE interface 
• Corrections for electrophoretic mobility and activity coefficient  
• Scaling argument for effective dispersion coefficient of species in ITP interface. 
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Figure S-1:  Raw greyscale intensity images of sample zone at five locations 

downstream of the TE well in an ITP experiment. Here, the leading and trailing 

electrolytes were 240 mM histidine-HCl and 2.5 mM Na-phenylpropionic acid 

respectively and current was held constant at 30 µAmp. The curvature in the sample 

zone is evidence of dispersion due to residual (non-uniform) EOF.   The curvature 

changes direction after x = 21 mm (station 4). 
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Figure S-2:  Plot of the electrophoretic mobility of Alexa-Fluor 488 as a function of 

the ionic strength of histidine-HCl buffer (pH = 5.3), as obtained from independent, 

uniform electrolyte injection experiments.  Solid line is a power law fit to the data.  The 

electrophoretic mobility by determined by electrokinetic injection of Alexa-Fluor 488 

inside a simple-cross geometry microchip and we monitored electroosomotic flow in 

the channel using Rhodamine B as the neutral marker. 

 

 

Analytical solution of sample concentration growth a LE-TE interface: 

Simplified flux-balance analysis 

For a univalent ITP system (weak/strong electrolyte), the concentration of trailing ion in 

the regulated TE zone is given by  (from Jovin’s and Alberty’s relations) 

le lete C Lte le T
T L le te te

L C Tμ μ μ⎜ ⎟+
C C

μ μμ ⎛ ⎞+
⎜ ⎟=
⎝ ⎠

 

(S.1)
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We use Jovin’s relation to arrive at the counterion concentration in the trailing zone 

le lete C Lte le le le T
C C L L le te te

L C T

C C C C
μ μμ

μ μ μ

⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟+⎝ ⎠

 (S.2)

 

Using these trailing ion and counterion concentrations, we can obtain the conductivity of 

the regulated TE zone as: 

( )te te te te
te T T t c c cF C Cσ α μ α μ= +  (S.3)

where te
Tα and te

Cα  are the degree of dissociation of the trailing and the counterion in the 

TE zone. These are obtained from their respective acid equilibrium constants (  

and ) and hydronium ion concentration (or pH) as: 
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(S.4)

HC +  can be obtained by using the electroneutrality condition  and 

substituting for 

te te te te
T T C CCα α= C

te
Tα  and te

Cα  from eq (S.4). 

2
, ,

,
1 1 4

2

tete te
a T a C TT T

H te te te
C C a T

K KC CC
C C K C

+

⎛ ⎞⎛ ⎞⎜ ⎟= − − − − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠C

C
 (S.5)

Since the concentration of trailing ion and counterion is known apriori, we can obtain 

the conductivity of the TE well ( tewellσ ) in similar way (equations (S.3)-(S.5)) 

  Page S-4  



The sample concentration in the regulated TE zone is related to the initial sample 

concentration in the well through the flux balance condition across the initial stationary 

boundary as: 

tewell tewell
te tewellS s te
S Ste te

tewellS s
C Cα μ σ

σα μ
=  (S.6)

 

The net influx of sample ions at the interface between the LE and TE zone is equal to 

the accumulation rate of sample ions. The diffusive fluxes are dominant only at the 

interface and only govern the width of the interface as well as the sample zone. Hence, 

we can also express the same accumulation rate as the net influx of sample ions into the 

sample zone, migrating at speed between the LE-TE interface. ITPV

( )te teS
S te ITP S

dN E V C
dt

μ= −  (S.7)

The speed of the interface ITPV is given by: 

le le te te
L L T T

ITP
le te

j jV α μ α μ
σ σ

= =  (S.8)

We now substitute for  in eq ITPV (S.7) with the expression in eq (S.8) and also substitute 

expression for  from eq te
SC (S.6) to arrive at 

( )
tewell tewell tewell

te te te teS S S
S S T T te te

tewellS S

dN CS j
dt

α μα μ α μ
σα μ

= −  (S.9)

Since the ITP interface moves at constant speed over time, i.e. ITPx V t= , we replace 

time t with distance x in eq (S.9) 

( )
tewell tewell tewell

te te te teS S S
S S T T te te

tewell ITPS S

dN CS j
dx V

α μ
α μ α μ

σα μ
= −  (S.10)

Again, substituting for from eq ITPV (S.8), we obtain 
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( )te te te te tewell tewellS S T T tewellS S S
Sle le te te

tewellL L S S

dN C
dx

α μ α μ α μ σ
σα μ α μ

−
= le  (S.11)

 

As none of the parameters on the RHS of eq (S.11) change with distance x , the number 

of sample species (per unit cross-section area) accumulated at the interface is simply 

( )te te te te tewell tewellS S T T tewellS S le
S Sle le te te

tewellL L S S

N
α μ α μ α μ σ

σα μ α μ

−
= C x  (S.12)

 

The approximate length scale of the interface can be obtained by solving for the 

distribution of the leading and trailing electrolyte at the interface. In the lab frame of 

reference, the convective diffusion equation for a univalent (weak/strong) electrolyte is 

given by: 

i i
i i i i

C CC E D
t x x

α μ∂ ∂∂ ⎛ ⎞= − +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (S.13) 

Here iα  is the degree of dissociation of species i . 

We apply the following transformation to the convective diffusion equation to translate 

the frame of reference with the interface. 

ITP

t
x V t

τ
ξ
=
= −

 (S.14) 

In the transformed set of variables, the convective diffusion equation is given by: 

i i
ITP i i i i

C CV C Eα μ iCD
τ ξ ξ ξ

∂ ∂ ⎛ ∂∂
− = − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎞  (S.15) 

The LE and TE species acquire reach a steady state distribution in short time scale (~ 1-

2 sec for interface width ~100 µm), we can neglect the species evolution term on the LHS 
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of eq (S.15) and solve for the steady state distribution. The simplified equation is then 

written as 

( ) i
ITP i i i i i

CV C C E Dα μ
ξ ξ ξ

⎛ ∂∂ ∂
− = − +⎜ ⎟∂ ∂ ⎝ ⎠

⎞
∂

 (S.16) 

or,  

i
ITP i i i i i i

CV C C E D Fα μ
ξ

∂
− = − + +

∂
 (S.17) 

where is a constant determined by the boundary conditions. For the leading and 

trailing ion, since the LE and TE interfaces move at identical speed and far away 

from the interface, 

iF

0iF =

ITP L L L LE T T T TEV C E C Eα μ α μ= =  (S.18) 

Therefore, the flux balance equations for leading and trailing ion simplify to 

L
ITP L L L L L

CV C C E Dα μ
ξ

∂
− = − +

∂
 (S.19) 

and 

T
ITP T T T T T

CV C C E Dα μ
ξ

∂
− = − +

∂
 (S.20) 

We eliminate from eq E (S.19) and (S.20) arrive at the following equation 

ITP ITP L L T T

L L T T L L L T T T

V V D C D C
C Cα μ α μ α μ ξ α μ ξ

∂ ∂
− + = −

∂ ∂
 (S.21) 

Next we assume negligible change in the pH across the interface such that Tα and 

Lα do not change significantly (i.e. te
T Tα α= and le

L Lα α= ) and we use Nerst-Einstein 

relationship to relate the diffusion coefficient of a species to its mobility  
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L T

L T

D D kT
eμ μ

= =  (S.22) 

 

We then integrate eq (S.21) obtain the following relationship between LC and . TC

1 1
, 0

, 0
exp

L T

T xL

L x T

CC
C C

α α
ξ
δ

=

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 

(S.23) 

 

where δ  is the length-scale of the interface width, given by 

 
( )

( )

L L T T

L L T T ITP

leT T

L L T T

kT
e V

kT
e j

α μ α μδ
α μ α μ

σα μ
α μ α μ

=
−

=
−

 (S.24) 

 

The total length scale over which changes at the interface is apprx. equal to the sum 

of lengthscale over which and drop. 

E

TLC C

( )
2 2 2 1 1 leT T

L T L T L L T T

kTw
e j

σα μδ δ
α α α α α μ α μ
⎛ ⎞ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟
−⎝ ⎠ ⎝ ⎠

 (S.25) 

Noting that le
L Lα α= , le

L Lμ μ=  and so on, the scale for concentration of sample ions in 

the interface can now be obtained using  the accumulated moles sample species and 

interface width length-scale obtained in eq (S.12) and (S.24). 

( )( )
2

S
S

te te te te le le te te tewell tewellle le S S T T L L T T tewellS SL T
Sle le te te le le te te

tewellL L T T L L S S

NC
w

e j C x
kT

α μ α μ α μ α μ α μα α
σα α α μ α μ α μ

≈

− −⎛ ⎞≈⎜ ⎟ +⎝ ⎠

(S.26)
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Corrections for Electrophoretic Mobility and Activity Coefficient: 

The fully ionized mobility of background electrolyte species (leading, trailing and 

counterion) is corrected to accommodate the influence of ionic strength using the Pitts 

equation.40,41   

( )0 0
, , 1 , 2

31i z i z i z
Iz z c z c

c I
μ μ μ− + −= − +

+
 (S.27) 

where 0
,i zμ  is the fully ionized mobility of the species i with valence z, I is the ionic 

strength and and  are constants,  1 2,c c 3c 1 20.23, 31.4 9c c e= = −  and (obtained 

after simplification of Pitts equation for symmetric electrolytes).  

3c 1.5=

Similarly, we correct for the dependence of activity coefficient of the electrolyte 

species on the ionic strength using the Truesdell-Jones42 model of the form: 

2

,log
1i z

Az I cI
Ba I

γ −
= +

+
 (S.28) 

where ,i zγ  is the activity coefficient of species i with valence , z I is the ionic strength 

and constan .5 1.5  a 0.1ts , nd 0 1A =  Ba =  c = . 
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Scaling Argument for Effective Dispersion Coefficient: 

 

Figure S-3. (a) Schematic of the distorted ITP interface showing the bulk velocity field (as 

black arrows in the frame of reference moving with the plug) and electric field (grey arrows) in 

the vicinity of the plug. (b) Schematic of the net velocity (bulk + electrophoretic) of LE and TE 

ions in the frame of reference moving with the ITP plug).  In b), arrows indicate net velocity of 

LE ions and dashed arrows indicate net velocity of TE ions. 

 

The non-uniform bulk (EOF) velocity in the LE and TE zones induces an axially 

varying pressure gradient.  This distorts the ITP interface since the centerline bulk 

velocity is higher than the bulk velocity near the wall.  In the frame of reference moving 

with the interface, the bulk velocity vector at the interface is shown in dark arrows in 

Figure S-3(a).  The interface distorts due to this induced pressure driven flow thereby 

creating a radially non-uniform conductivity and electric field.  The electric field vectors, 

in the vicinity of the interface, are shown in gray arrows in Figure S-3(a).  In this 

modified flow-field, the plug acquires a new steady state shape.  The velocity (and net 

flux) of the LE and TE ions near the LE-TE interface in the stationary frame of reference, 
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is positive at the centerline and negative near the walls, as shown in Figure S-3(b).  This 

mismatch in the axial flux at the LE-TE interface must be balanced by radial flux of the 

species.  The species will diffuse, advect and electromigrate in the radial direction and in 

suppressed EOF conditions, we hypothesize that radial electromigration is the dominant 

mechanism contributing to the radial mass flux.  For radial electromigration to balance 

axial dispersion, the two phenomena must occur over the same time scale.  

  For the given case, the time scale for axial dispersion is given by: 

~ eof
axial

eof

V
τ

δ
 (S.29) 

where eofδ is the stretched interface width due to EOF   

Similarly, time scale for radial electromigration: 

~ y
radial

E
a

μ
τ  (S.30) 

where a is the width of the channel and Ey is the radial electric field component. 

Therefore, equating eq  (S.29) and (S.30), we arrive at an expression for eofδ  

~ eof
eof

L y

V a
E

δ
μ

 (S.31) 

Now, we express the total width of ITP plug as the sum of original interface width (only 

diffusion) and stretched interface width  

eofw δΔ = +           (S.32) 

Here 
( )

L T

L L T

Dw
Ex

μ
μ μ μ

=
−

        (S.33) 

Next we express  in the same form as  in terms of effective dispersion coefficient as: Δ w
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( )
,L eff T

L L T

D
E

μ
μ μ μ

Δ ≈
− x

        (S.34) 

Substituting expressions for 0,δΔ  and eofδ  in eq (S.32), and simplifying to obtain 

we get: ,L effD

( )
,

L Tx
L eff L eof

y T

ED D V a
E

μ μ
μ
−

≈ +        (S.35) 

or, 

(, 1L eff LD D Pβ≈ + )e          (S.36) 

where, ( )~ L Tx

y T

E
E

μ μ
β

μ
−
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